Policies.klUCB_forGLR module¶
The generic KL-UCB policy for one-parameter exponential distributions, using a different exploration time step for each arm (\(\log(t_k) + c \log(\log(t_k))\) instead of \(\log(t) + c \log(\log(t))\)).
It is designed to be used with the wrapper
GLR_UCB.By default, it assumes Bernoulli arms.
Reference: [Garivier & Cappé - COLT, 2011](https://arxiv.org/pdf/1102.2490.pdf).
-
Policies.klUCB_forGLR.c= 3¶ Default value when using \(f(t) = \log(t) + c \log(\log(t))\), as
klUCB_forGLRis inherited fromklUCBloglog.
-
Policies.klUCB_forGLR.TOLERANCE= 0.0001¶ Default value for the tolerance for computing numerical approximations of the kl-UCB indexes.
-
class
Policies.klUCB_forGLR.klUCB_forGLR(nbArms, tolerance=0.0001, klucb=CPUDispatcher(<function klucbBern>), c=3, lower=0.0, amplitude=1.0)[source]¶ Bases:
Policies.klUCBloglog.klUCBloglogThe generic KL-UCB policy for one-parameter exponential distributions, using a different exploration time step for each arm (\(\log(t_k) + c \log(\log(t_k))\) instead of \(\log(t) + c \log(\log(t))\)).
- It is designed to be used with the wrapper
GLR_UCB. By default, it assumes Bernoulli arms.
Reference: [Garivier & Cappé - COLT, 2011](https://arxiv.org/pdf/1102.2490.pdf).
- It is designed to be used with the wrapper
-
__init__(nbArms, tolerance=0.0001, klucb=CPUDispatcher(<function klucbBern>), c=3, lower=0.0, amplitude=1.0)[source]¶ New generic index policy.
nbArms: the number of arms,
lower, amplitude: lower value and known amplitude of the rewards.
-
t_for_each_arm= None¶ Keep in memory not only the global time step \(t\), but also let the possibility for
GLR_UCBto use a different time steps \(t_k\) for each arm, in the exploration function \(f(t) = \log(t_k) + 3 \log(\log(t_k))\).
-
computeIndex(arm)[source]¶ Compute the current index, at time t and after \(N_k(t)\) pulls of arm k:
\[\begin{split}\hat{\mu}_k(t) &= \frac{X_k(t)}{N_k(t)}, \\ U_k(t) &= \sup\limits_{q \in [a, b]} \left\{ q : \mathrm{kl}(\hat{\mu}_k(t), q) \leq \frac{\log(t_k) + c \log(\log(t_k))}{N_k(t)} \right\},\\ I_k(t) &= U_k(t).\end{split}\]If rewards are in \([a, b]\) (default to \([0, 1]\)) and \(\mathrm{kl}(x, y)\) is the Kullback-Leibler divergence between two distributions of means x and y (see
Arms.kullback), and c is the parameter (default to 1).Warning
The only difference with
klUCBis that a custom \(t_k\) is used for each arm k, instead of a common \(t\). This policy is designed to be used withGLR_UCB.
-
__module__= 'Policies.klUCB_forGLR'¶