PoliciesMultiPlayers.Scenario1 module¶
Scenario1: make a set of M experts with the following behavior, for K = 2 arms: at every round, one of them is chosen uniformly to predict arm 0, and the rest predict 1.
Reference: Beygelzimer, A., Langford, J., Li, L., Reyzin, L., & Schapire, R. E. (2011, April). Contextual Bandit Algorithms with Supervised Learning Guarantees. In AISTATS (pp. 19-26).
-
class
PoliciesMultiPlayers.Scenario1.
OneScenario1
(mother, playerId)[source]¶ Bases:
PoliciesMultiPlayers.ChildPointer.ChildPointer
OneScenario1: at every round, one of them is chosen uniformly to predict arm 0, and the rest predict 1.
-
__module__
= 'PoliciesMultiPlayers.Scenario1'¶
-
-
class
PoliciesMultiPlayers.Scenario1.
Scenario1
(nbPlayers, nbArms, lower=0.0, amplitude=1.0)[source]¶ Bases:
PoliciesMultiPlayers.BaseMPPolicy.BaseMPPolicy
Scenario1: make a set of M experts with the following behavior, for K = 2 arms: at every round, one of them is chosen uniformly to predict arm 0, and the rest predict 1.
Reference: Beygelzimer, A., Langford, J., Li, L., Reyzin, L., & Schapire, R. E. (2011, April). Contextual Bandit Algorithms with Supervised Learning Guarantees. In AISTATS (pp. 19-26).
-
__init__
(nbPlayers, nbArms, lower=0.0, amplitude=1.0)[source]¶ nbPlayers: number of players to create (in self._players).
Examples:
>>> s = Scenario1(10)
To get a list of usable players, use
s.children
.Warning:
s._players
is for internal use
-
__module__
= 'PoliciesMultiPlayers.Scenario1'¶