Source code for Policies.klUCB

# -*- coding: utf-8 -*-
""" The generic KL-UCB policy for one-parameter exponential distributions.

- By default, it assumes Bernoulli arms.
- Reference: [Garivier & Cappé - COLT, 2011](https://arxiv.org/pdf/1102.2490.pdf).
"""
from __future__ import division, print_function  # Python 2 compatibility

__author__ = "Olivier Cappé, Aurélien Garivier, Lilian Besson"
__version__ = "0.6"

from math import log
import numpy as np
np.seterr(divide='ignore')  # XXX dangerous in general, controlled here!

try:
    from .kullback import klucbBern
    from .IndexPolicy import IndexPolicy
except (ImportError, SystemError):
    from kullback import klucbBern
    from IndexPolicy import IndexPolicy

#: Default value for the constant c used in the computation of KL-UCB index.
c = 1.  #: default value, as it was in pymaBandits v1.0
# c = 1.  #: as suggested in the Theorem 1 in https://arxiv.org/pdf/1102.2490.pdf


#: Default value for the tolerance for computing numerical approximations of the kl-UCB indexes.
TOLERANCE = 1e-4


# --- Class

[docs]class klUCB(IndexPolicy): """ The generic KL-UCB policy for one-parameter exponential distributions. - By default, it assumes Bernoulli arms. - Reference: [Garivier & Cappé - COLT, 2011](https://arxiv.org/pdf/1102.2490.pdf). """
[docs] def __init__(self, nbArms, tolerance=TOLERANCE, klucb=klucbBern, c=c, lower=0., amplitude=1.): super(klUCB, self).__init__(nbArms, lower=lower, amplitude=amplitude) self.c = c #: Parameter c self.klucb = klucb #: kl function to use self.klucb_vect = np.vectorize(klucb) #: kl function to use, in a vectorized way using :func:`numpy.vectorize`. self.klucb_vect.__name__ = klucb.__name__ self.tolerance = tolerance #: Numerical tolerance
[docs] def __str__(self): name = self.klucb.__name__[5:] if name == "Bern": name = "" complement = "{}{}".format(name, "" if self.c == 1 else r"$c={:.3g}$".format(self.c)) if complement != "": complement = "({})".format(complement) return r"kl-UCB{}".format(complement)
[docs] def computeIndex(self, arm): r""" Compute the current index, at time t and after :math:`N_k(t)` pulls of arm k: .. math:: \hat{\mu}_k(t) &= \frac{X_k(t)}{N_k(t)}, \\ U_k(t) &= \sup\limits_{q \in [a, b]} \left\{ q : \mathrm{kl}(\hat{\mu}_k(t), q) \leq \frac{c \log(t)}{N_k(t)} \right\},\\ I_k(t) &= U_k(t). If rewards are in :math:`[a, b]` (default to :math:`[0, 1]`) and :math:`\mathrm{kl}(x, y)` is the Kullback-Leibler divergence between two distributions of means x and y (see :mod:`Arms.kullback`), and c is the parameter (default to 1). """ if self.pulls[arm] < 1: return float('+inf') else: # XXX We could adapt tolerance to the value of self.t return self.klucb(self.rewards[arm] / self.pulls[arm], self.c * log(self.t) / self.pulls[arm], self.tolerance)
[docs] def computeAllIndex(self): """ Compute the current indexes for all arms, in a vectorized manner.""" indexes = self.klucb_vect(self.rewards / self.pulls, self.c * np.log(self.t) / self.pulls, self.tolerance) indexes[self.pulls < 1] = float('+inf') self.index[:] = indexes